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ABSTRACT

The incoherent diffraction MTF plays an increasingly important role in the range
performance of imaging systems as the wavelength increases and the optical aperture
decreases. Accordingly, all NVESD imager models have equations that describe the
incoherent diffraction MTF of a circular entrance pupil. NVThermIP, a program which
models thermal imager range performance, has built in equations which analytically
model the incoherent diffraction MTF of a circular entrance pupil and has a capability to
input a table that describes the MTF of other apertures. These can be calculated using
CODE V, which can numerically calculate the incoherent diffraction MTF in the vertical
or horizontal direction for an arbitrary aperture. However, we are not aware of any
program that takes as input a description of the entrance pupil and analytically outputs
equations that describe the incoherent diffraction MTF. This work explores the
effectiveness of Mathematica to analytically and numerically calculate the incoherent
diffraction MTF for an arbitrary aperture. In this work, Mathematica is used to
analytically and numerically calculate the incoherent diffraction MTF for a variety of
apertures and the results are compared with CODE V calculations.

Keyword list. Incoherent, Diffraction, Optical diffraction, Modulation Transfer Function, Optical Transfer
Function, MTF, OTF, Mathematica, Analytical calculation

1. INTRODUCTION

Objectives of Research. NVThermIP is a well-known NVESD developed program’ that takes as input
sensor, atmospheric, and target parameters, and outputs the range performance of thermal imaging systems.
One of the sensor input parameters needed by NVThermlP is the incoherent diffraction modulation transfer
function (MTF). The analytic expression for the incoherent diffraction MTF of an unobstructed circular
aperture is built into NVThermIP. However, if the sensor entrance pupil has a shape other than circular
then the incoherent diffraction MTF is input to NVThermIP as a table. The optical MTF table is normally
calculated by the programs CODE V or ZEMAX or measured in the lab as an effective optical MTF. One
objective of this work is to enable the calculation of an incoherent diffraction MTF table suitable for input
into NVThermlIP by using the Mathematica program A second objective is to use Mathematica to produce
exact analytical formulae that can be built into NVThermIP and thus make NVThermlIP directly applicable
to a wider range of optical designs without the need to input incoherent diffraction MTF tables appropriate
to that sensor.

Objectives of Paper. The objectives of the paper are: 1) exhibit the subroutines that analytically and
numerically calculate incoherent diffraction MTF, 2) demonstrate the use of these subroutines,
3) demonstrate that the routines reproduce well-known analytical results and can produce hitherto unknown
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analytical results and 4) demonstrate the validity of the exhibited code by comparison with CODE V
calculations.

Software Description. CODE V and ZEMAX are optical ray tracing codes that have an ability to
numerically calculate the incoherent diffraction MTF associated with a variety of entrance pupils™*.
Mathematica is a general programming language used mainly for mathematical calculation which has

outstanding analytical, numerical, and graphical capabilities®.

Other Work. Several books™ "> %> and research papers'’?' either discuss how to calculate incoherent

diffraction MTF or give formulas for different geometries. An unpublished report'® was most useful in
verifying and validating the Mathematica codes presented here.

Outline. Section 2 describes the methods used here to calculate incoherent diffraction MTF. Analytical
incoherent diffraction MTF formulas are given in Section 3. Section 4 describes how the Mathematica
codes developed here were verified. Conclusions are given in Section 5 and the Mathematica code used is
given in the Appendix. The reader is encouraged to first peruse the Appendix with the objective of
understanding how to use the functions defined there.

2. THEORY

Erdrarice pipil

Erdrarice pupil dicplaced b 5

Figure 1. Defining the autocorrelation of the entrance pupil

The theory of incoherent diffraction is discussed elsewhere®'>****. Here we only describe relationships
utilized in the Appendix. The top part of Fig. 1 defines the optical entrance pupil shape. Here an elliptical
shaped pupil is shown but the entrance pupil shape may be arbitrary and include obstructions. The bottom
part of Fig. 1 shows the original entrance pupil and the entrance pupil displaced by the distance s. Let A,
and Agp denote the area of the entrance pupil and the overlap area when the pupil is displaced by the
distance s. Here it is assumed that the units of s are mm and the units of Ay and Ay are mm?. The overlap
area is a function of the displacement s. Let A denote the wavelength of the incident light in units of
micrometers and fl denote the focal length of the lens in mm. Then the optical transfer function is given by

MTE(f) = M |
0

55103 Afl f where spatial frequency f is in cycles /mm (1a)

MTF(f) = M |
0

SoAf where spatial frequency f is in cycles/mr (1b)

In equation (1a) the factor 10~ allows the frequency fto be in cycles/mm when the units of s and fl are mm
and the units of A are micrometers.
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Although Fig. 1 shows the displacement s in the positive x-direction the displacement could just as well
have been taken in the y-direction or in any intermediate direction. With s taken to be in the x-direction the
frequency in equation 1 is a frequency in the x-direction and is denoted by f ; with s taken to be in the y-
direction the frequency in equation 1 is a frequency in the y-direction and is denoted by f;.

The calculation of Ag;(s) can be difficult to do analytically by hand for two reasons: 1) For obscured
apertures the integral limits change with s and the size of the obscuration; 2) Even when the limits are
known the integrals are sometimes difficult to evaluate analytically. A strength of Mathematica, is that it
allows AgL(s) to be calculated without the user having to explicitly specify the limits of integration. As
illustrated in the Appendix this is done by using the Mathematica defined functions Boole and Integrate.

The above equations are useful if the MTF is to be expressed directly in cycles/mm or cycles/mr.
Sometimes it is convenient to express the MTF in terms of a normalized frequency f,. As s increases, for
all s values larger then s,,,,x the overlap area Agy is zero. Typically the sy, value in the x-direction is
different from the s, value in the y-direction. An optical cutoff frequency f;, in the x and y directions are
defined in terms of $,;:

s
Soco = % [cycles / mr] (2a)
foco = _max [cycles / mml]
107 A fl
(2b)

In equation 2, s« and fl are expressed in mm and the wavelength A is expressed in micrometers. The
dimensionless normalized frequency f; is defined by:

_ L @)
Jfoco
In equation 3, the units of f are the same as the units of f., . The user defined Mathematica functions
MTFNormalizedEqHor and MTFNormalizedEqVer given in the Appendix allow for the computer
calculation of analytical MTF functions. An important argument of these functions is the inequality that
defines the entrance pupil. To have these functions properly output a normalized frequency the entrance
pupil shape should satisfy the following rules:
1. The entrance pupil shape is input in units of mm
2. When using MTFNormalizedEqHor the entrance pupil shape is normalized so that sy, is one in
the horizontal direction.
3. When using MTFNormalizedEqVer the entrance pupil shape is normalized so that s, is one in
the vertical direction.

I

3. EXAMPLES

Circular Entrance Pupil.

Dy

Figure 2. Circular entrance pupil with diameter D,,.
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We use MTFNormalizedEqHor and choose a diameter of one in the inequality so as to make s, equal to
one as required by rule 2 above.
1,2
MTFNormalizedEqHor [x2 + y2 < (E ) , {x, v}, fn] // Simplify
When the above expression is input, Mathematica, outputs the following expression for the MTF in the
horizontal direction.

l fn == O
) fnmﬂ AreCoslfn] o o fp <1 "’

T

Using equation 2a the optical cutoff frequency f;., associated with equation (4) is Dy/A where D, is the
entrance pupil diameter in mm. The above expression agrees with equation 11-4 in reference 6. Because
of the symmetry of the circular pupil, equation 4 gives the incoherent diffraction MTF in either the
horizontal or vertical direction.

Square Entrance Pupil.

T
| |

Figure 3. Square entrance pupil with side a.

a

We use MTFNormalizedEqHor to find the equation for the MTF of a square entrance pupil and choose
the length of a side to be equal to one so as to make s,,,,x equal to one as required by rule 2 above.

1 1
MTFNormalizedEqHor [Abs[x] < 2 && Abs[y] < 2 {x, v}, fn]

When the above expression is input, Mathematica, outputs the following expression for the MTF in the
horizontal direction.

{1-fn 0s<fn<1 )
This agrees with equation 1.26 in reference 8. Using equation 2a, the optical cutoff frequency fo.,

associated with equation 5 isa /A where a is the length of a side in mm. Square symmetry implies
equation 5 also applies to the vertical direction.

Semi-Circular Entrance Pupil.

a— Iy —

Figure 4. Semi-circular entrance pupil with diameter D,.

Proc. of SPIE Vol. 6941 69410M-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 04/22/2014 Terms of Use: http://spiedl.or g/terms



We use MTFNormalizedEqHor to find the equation for the MTF of the semi-circular pupil and choose
the diameter to be equal to one so as to make s, €qual to one in the horizontal direction as required by
rule 2 above.

112
MTFNormalizequHor[x2 + y2 < (E) &y >0, {x,v}, fn] // Simplify

When the above expression is input, Mathematica outputs the following expression for the MTF in the
horizontal direction.

1 fn =0
~2 fny 1-fn? +2 ArcCos[fn] 0<fn<l (6)

Tt

In equation 6, the optical cutoff frequency fq., in units of cycles/mr is givenby /.

To find the MTF in the vertical direction, use MTFNormalizedEqVer and choose the diameter equal to
two so as to make s, equal to one in the vertical direction.

MTFNormalizequVer[x2 +y?P<1% 88y > 0, (%, v}, fn]

When the above expression is input, Mathematica outputs the following expression for the MTF in the
vertical direction.

2 ({—fn V1 - £n? + ArcCos[fn] 0 =<fn<1

Tt

(7
In equation 7, the optical cutoff frequency f., is given by Dy/(2 A).

4. VERIFICATION
Circular Entrance Pupil. Equation 4 is a well-known expression known to be true’. We get evidence for

the correctness of NMTFNormalizedHor by comparing its output with the results of equation 4. The
command that generated the numerical results is

1,2
NMTFNormalizedHor[x2+ y2 < (5) , {x, v}, 30.]

In the graph below the 30 points correspond to numerical results obtained from the above command and the
solid line is computed using equation 4.
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MTF of Circular Entrance Pupil
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Figure 5. Comparison of numerical and analytical calculations for circular entrance pupil.

Square Entrance Pupil. Equation 5 is a well-known expression (see equation 1.26 in reference 8). We
get evidence for the correctness of NMTFNormalizedHor by comparing its output with the results of
equation 5. The command that generated the numerical results is

1 1
NMTFNormalizedHor[Abs[x] < > && Abs[y] < i {x, v}, 30.]

In the graph below the points correspond to numerical results obtained from the above command and the
solid line is computed using equation 5.

MTF of Square Entrance Pupil
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Figure 6. Comparison of numerical and analytical calculations for a square entrance pupil.

Semi-Circular Entrance Pupil. We use NMTFNormalizedHor to gain confidence in this function and
MTFNormalizedEqHor by determining if they are consistent. The command used to generate the
numerical results is

2
NMTFNormalizedHor[x2 + y2 < (%) &y >0, {x,vy}, 30.]

In the graph below the points correspond to numerical results obtained from the above command and the
solid line is computed using equation 6.
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Horizontal MTF of Semi—circular Entrance Pupil
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Figure 7. Comparison of numerical and analytical calculations for a semi-circular entrance pupil.

The above calculations served to verify MTFNormalizedEqHor and NMTFNormalizedEqHor.
Subsequent calculations will verify MTFCyclesPerMmEqHor and NMTFCyclesPerMmHor. When the
output is given in cycles per mm, besides specifying the entrance pupil size it is necessary to also specify
the wavelength of the incident radiation A and the optical system focal length fl. In calculations where the
output is in cycles per mm it is assumed that A equals 10 micrometers and fl equals 10 mm.

Elliptical Entrance Pupil. .

|— 2.5 mam —

Figure 8. Elliptical entrance pupil with major axis of 5.0 mm and minor axis of 2.5 mm.

The following commands output the equations and numerical tables for the horizontal and vertical MTF.

X 2 y \2
MTFCyclesPerMmEqur[(m) + (ﬁ) <1, {x,y}, 10, 10, f]

NMTFCyclesPerMmHor[(l 5) . (LS) <1, x,y},10,10,2.5, 30.]

y

—) <1, %, 3,10, 10, £]
2

—

MTFCyclesPerMmEqVer (lx )
X 2

2.5
y
(2—) <1, x,y},10,10,5.0, 30.]

vU‘l

NMTFCyclesPerMmVer [ ( 125

Space limitations preclude exhibiting the equation and table produced by these commands. A graph
comparing the analytical and numerical calculation is shown below.
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Horizontal MTF  for Elliptical Entrance Pupil Vertical MTF for Elliptical Entrance Pupil
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Figure 9. Comparison of numerical and analytical calculations for entrance pupil of Fig. 8.
Figure 9 demonstrates agreement between analytical and numerical calculations done by Mathematica.
CODE V calculations done on the entrance pupil of Fig. 8 are in agreement with the numerical calculations

exhibited in Fig. 9.

Distributed Entrance Pupil.
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w

Figure 10. Distributed aperture.

In Fig. 10 the center-to-center distance in the vertical and horizontal directions is 3.8 mm. Each of the four
clear areas has a diameter of 1.2 mm.

By symmetry, the MTF in the vertical and horizontal directions is the same. The commands used to define
the distributed aperture are given below.

Regionl = x° + (y - 1.9)% < 0.6% ;
Region2 = x? + (y + 1.9)2 < 0.6%;
Region3 = (x-1.9)%2 + y?2 < 0.6%;
Regiond = (x+ 1.9)% + y2 < 0.6%;

Region = Regionl || Region2 || Region3 || Region4;

The commands used to generate the equation and table that define the horizontal or vertical MTF are given
below.

MTFCyclesPerMmEqVer [Region, {x, y}, 10., 10., £f]
NMTFCyclesPerMmVer [Region, {x, y}, 10., 10., 5, 30]

Space limitations preclude exhibiting the equation or table produced by the above commands. A
comparison of the analytical and numerical results as generated by the above commands is shown below.
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Horizontal or Vertical MTF for Distributed Aperture
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Figure 11. Comparison of numerical and analytical calculations for the distributed aperture of Fig. 10.

The calculations for the distributed aperture of Fig. 10 were repeated using CODE V and were in
agreement with the numerical Mathematica calculations exhibited in Fig. 11.

Racetrack Aperture.

1

| 3.4 mom

: a

S.Dmm—t-l

Figure 12. Racetrack aperture.

In Figure 12 a clear circular entrance pupil 5.0 mm in diameter is truncated to be 3.4 mm in the vertical
direction.

The following commands output the equations and numerical tables for the horizontal and vertical MTF.

MTFCyclesPerMmEqur[x2 +y*< 2.5 §& BAbs[y] < 1.7, {x, y}, 10, 10, £]
MTE‘CyclesPerMmEqur[x2 +y?< 2.5% §& Bbs[y] < 1.7, {x, y}, 10, 10, £]
NMTFCyclesPerMmHor[xz+y2 < 2.5% & Abs[y] < 1.7, {x, y}, 10.,10., 5.0, 25.]

NMTFCyclesPerMmVer[xz+y2 < 2.5% §& Abs[y] < 1.7, {x, y}, 10.,10., 3.4, 25.]

Space limitations preclude exhibiting the equations or tables. A graphic comparing the analytical and
numerical calculations is shown below.
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Horizontal MTF for Racetrack Entrance Pupil Vertical MTF for Racetrack Entrance Pupil
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Figure 13. Comparison of numerical and analytical calculation for racetrack entrance pupil.

Figure 13 demonstrates agreement between analytical and numerical calculations done by Mathematica.
CODE V calculations done on the entrance pupil of Fig. 12 are in agreement with the numerical
calculations exhibited in Fig. 13.

5. SUMMARY AND CONCLUSIONS

In this paper, functions written in Mathematica have been exhibited and demonstrated that take as input the
shape and size of the entrance pupil and then analytically or numerically calculate the incoherent diffraction
MTF in the vertical or horizontal direction. Although CODE V, ZEMAX and other programs can
numerically calculate these incoherent diffraction MTFs we are not aware of any other code that can take as
input a description of the entrance pupil and output an analytical expression for the MTF in the specified
direction. If an exact description of the entrance pupil is input, then the functions exhibited here will output
an exact expression for the MTF in the specified direction.

The functions exhibited here have been verified with several entrance pupil shapes by comparing
Mathematica generated analytical and numerical expressions against themselves and with numerical
calculations done by CODE V. Another method for verifying the functions exhibited here is by comparing
results produced by those functions with well-known results.

For a sufficiently complicated description of the entrance pupil, the functions exhibited here that produce
analytical results may grind on endlessly and fail to produce an analytical result. For an entrance pupil that
has sufficiently fine detail, the numerical functions exhibited here may need tweaking to properly reflect
changes in the MTF caused by the fine detail.

This paper demonstrates a computer program that produces analytical MTF results for cases where it would
be either too hard or too tedious to get analytical results from hand calculation and can serve as a user’s

manual for the functions given in the Appendix.
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APPENDIX — MTF Functions Used in this Paper and Notes on Their Use
All calculations were done in Mathematica 6.0.0.

MTFNormalizedEqHor outputs an MTF equation in units of normalized frequency f with the entrance
pupil shape described by Ineq. Here {x,y} corresponds to the variables used in Ineq. Similar comments
apply to MTFNormalizedEqVer.

MTFNormalizedEqHor[Ineq , {x_, y_ }, f£.] := Module[{temp, A0, s},
A0 = Integrate[Boole[Ineq], {x, -®, ©}, {y, -®, ©}];
1
temp = IE Integrate[Boole[Ineq && (Ineq /. x> (x-s))], {X, -», ©}, {y, -», ©}, Assumptions-» s20];

temp /. s> f]

MTFNormalizedEqVer[Ineq , {x , vy }, £ ] := Module[{temp, A0, s},
A0 = Integrate[Boole[Ineq], {x, -®, ®}, {y, -o, ®}];

1
temp = A_O Integrate[Boole[Ineq && (Ineq /. y » (y -s))1, {y, -©, ®}, {X, -, ®»}, Assumptions- s20]; temp/.s > f]

NMTFNormalizedHor outputs NPoints which numerically describe the Normalized MTF. The entrance
pupil shape is described by Ineq and {x,y} corresponds to the variables used in Ineq. Similar comments
apply to MTFNormalizedVer.

NMTFNormalizedHor[Ineq , {x_, y_}, NPoints_] := Module[{AO, s},

A0 = NIntegrate[Boole[Ineq], {x, -®, ©}, {y, -, ©}1;

1
Table[{s, A—ONIntegrate[Boole[Ineq && (Ineq /. x> (x-8))], {¥x, ~o, ®}, {y, -», oo}]}, {s, 0,1, m}] // Chop
NMTFNormalizedVer[Ineq , {x_, y_}, NPoints ] := Module[(AO, s},
A0 = NIntegrate[Boole[Ineqg], {x, -, ©}, {y, -o, ®}];
1
Table[{s, +; Nintegrate(Boole[Ineq && (Ineq /. y » (v -5)], (x, -, @}, (¥, -, w)]}, {s, 0,1, m}] // Chop

]

MTFCyclesPerMmEqHor outputs an equation for the horizontal MTF in units of cycles per mm. The
inputs are an inequality Ineq that describes the entrance pupil shape, {x, y} the variables used in the
inequality, the wavelength A and the focal length fl. The variable used to describe frequency in the
equation is f. Similar comments apply to MTFCyclesPerMmEqVer.

MTFCyclesPerMmEqHor[Ineq , {x_, v }, A, fl_, f ] := Module[{temp, A0, s},
A0 = Integrate[Boole[Ineq], {x, -®, o}, {y, -®, ©}];

1
temp = IE Integrate[Boole[Ineq && (Ineq /. x-» (x-s))], {x, -©, ©}, {y, -©, ©}, Assumptions-» s20];

temp /. s 1073 2 £1 f]
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MTFCyclesPerMmEqVer[Ineq , {x , vy }, A, fl_, f ] := Module[{temp, A0, s},
A0 = Integrate[Boole[Ineq], {x, -, ©}, {y, -, ©}];

1
temp = E Integrate[Boole[Ineq && (Ineq /. y » (v - s))], {y, -o, ©}, {X, -o», o}, Assumptions- s20];

temp /. s> 1073 1 £1 f]

NMTFCyclesPerMmHor outputs NPoints that numerically describes the horizontal MTF. The entrance
pupil shape is described by Ineq that utilizes variables {x,y}. The wavelength of the incident radiation,
focal length of the optical system and the maximum displacement that corresponds to the cutoff frequency
are given by A, fl and smax . Similar comments apply to NMTFCyclesPerMmVer.

NMTFCyclesPerMmHor[Ineq , {x , y }, A, f1_, smax_, NPoints ] := Module[{temp, A0, s},
A0 = NIntegrate[Boole[Ineq], {x, -o, ®}, {y, -, ®}];
1 smax
temp = Table[{s, — NIntegrate[Boole[Ineq && (Ineq /. x> (x-58))], {¥x, -®», @}, {y, -®, oo)]}, {s, 0, smax, - }] // Chop;
A0 NPoints
a
temp /. {a_, b}~ {m, b}
NMTFCyclesPerMmVer([Ineq , {x_, y }, A, f1_, smax , NPoints ] := Module[{temp, A0, s},
A0 = NIntegrate[Boole[Ineq], {x, -», ®}, {y, -, ®}];
temp = Table|{s, L Nintegrate[Boole[Ineq §& (Ineq /. y » (v - $))1, {7, -0, ®}, {x, o, ®} 1}, {5, 0, smax, 1] // chop;
20 NPoints

temp /. {a_, b_}- {m;ﬂ’ b}
]

MTFCyclesPerMrHor produces an equation that describes the horizontal MTF in units of cycles per mr.
The entrance pupil shape is described by an inequality Ineq that utilizes variables {x,y}. The incident
radiation has wavelength A. The symbol f is used for frequency in the output equation. Similar comments
apply to MTFCyclesPerMrVer.

MTFCyclesPerMrEqHor[Ineq , {x , v }, A, £] := Module[{temp, AQ, s},
A0 = Integrate[Boole[Ineq], {x, -®, o}, {y, -®, ©}];

1
temp = IE Integrate[Boole[Ineq && (Ineq /. x> (x-s))], {X, -», ©}, {y, -», ©}, Assumptions-» s20];

temp/.s-> 2 f]

MTFCyclesPerMrEqVer[Ineq , {x , v }, A, £ 1] := Module[{temp, A0, s},
A0 = Integrate[Boole[Ineq], {x, -, ©}, {y, -, ®}];

1
temp = ZE Integrate[Boole[Ineq && (Ineq /. y » (v - s))], {y, -o, ©}, {X, -, o}, Assumptions- s20];

temp /. s> 2 f]

NMTFCyclesPerMrHor outputs a table with NPoints that describes the horizontal MTF in cycles per mr.
The entrance pupil shape is described by an inequality Ineq that utilizes variables {x,y}. The incident
radiation has wavelength A and smax is the displacement that corresponds to the cutoff frequency. Similar
comments apply to NMTFCyclesPerMrVer.
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NMTFCyclesPerMrHor[Ineq , {x , y }, A, smax_, NPoints_] := Module[(temp, A0, s},

A0 = NIntegrate[Boole[Ineq], {x, -», @}, {y, -©, ®}];

1

temp = Table[{s, — NIntegrate[Boole[Ineq && (Ineq /. x> (x-s))], {¥, ~®, ®}, {y, -®, »} ]}, {s, 0, smax, smfax }] // Chop;
A0 NPoints

temp/. {a_, b }>» {%, b}]

NMTFCyclesPerMrVer[Ineq , {x_, y_}, A_, smax_, NPoints_] := Module[{temp, A0, s},

A0 = NIntegrate[Boole[Ineq], {x, -®, ®}, {y, -, ®}];

temp = Table|{s, L Nintegrate[Boole[Ineq §& (Ineq /. y » (v - $))1, {y, -0, ®}, {x, o, ®} 1}, {s, 0, smax, ——="_}] // chop;
20 NPoints

temp/. {a_, b }~» {%, b}]
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